«УТВЕРЖДАЮ»

Ректор ОУП ВО «АТиСО» Н.Н. Кузьмина

198 2023 г.

ПРОГРАММА ВСТУПИТЕЛЬНЫХ ИСПЫТАНИЙ

при приеме на обучение для поступающих по программам бакалавриата «Химия»

Декан факультета Уощ ФИО

Химия

Программа вступительного испытания

Цели и задачи программы

Цель вступительного испытания по Химии заключается в оценке уровня у абитуриентов, поступающих на 1 курс обучения по программам бакалавриата, химических знаний в рамках общеобразовательной дисциплины «Химия» и в объеме программы среднего общего образования.

Задачи вступительного испытания:

- выяснить степень готовности поступающих к освоению образовательных программ высшего образования;
- определить уровень знаний, поступающих по дисциплине «Химия» и дать им оценку;
- знание основных законов и понятий химии.

Требования к уровню подготовки

На вступительном испытании по Химии поступающий должен продемонстрировать следующие знания и умения:

- знание конкретных физических и химических свойств простых веществ и однотипных соединений элементов;
- умение давать сравнительную характеристику элементов по группам и периодам периодической системы Д. И. Менделеева;
- умение анализировать зависимость свойств веществ от их состава и строения;
- на основании теории химического строения органических соединений А.М. Бутлерова экзаменующийся должен уметь давать характеристику каждого класса органических соединений: особенностей электронного и пространственного строения, закономерностей изменения свойств в

гомологическом ряду, а также знать номенклатуру, виды изомерии, химические свойства.

Основное содержание программы

1. Раздел «Теоретические основы химии».

Строение атома. Строение вещества.

Атом. Состав атомных ядер. Изотопы. Химический элемент. Молекула. Простое вещество, сложное вещество, смесь веществ. Понятие об аллотропии и аллотропных модификациях. Постоянство состава вещества. Относительная атомная и относительная молекулярная масса. Моль. Молярная масса. Число Авогадро. Физические и химические явления. Валентность, степень окисления.

Учение о периодичности. Периодический закон и периодическая система элементов Д. И. Менделеева.

Периодический закон химических элементов Д.И. Менделеева. Распределение электронов в атомах элементов первых четырех периодов. s-, p-, d-элементы. Строение периодической системы: малые и большие периоды, группы и подгруппы. Характеристика отдельных химических элементов главных подгрупп на основании положения в периодической системе и строения атома. Значение периодического закона для понимания научной картины мира, развития науки и техники.

Химическая связь.

Виды химической связи. Ковалентная (полярная и неполярная) связь и способы ее образования. Длина и энергия связи. Понятие об электроотрицательности химических элементов. Степень окисления. Ионная связь и ее образование. Заряд иона. Металлическая связь. Типы кристаллических решеток. Модель гибридизации орбиталей.

Химические реакции.

Типы химических реакций: реакции соединения, разложения, замещения, ионного обмена. Тепловой эффект химических реакций. Сохранение и превращение

энергии при химических реакциях. Скорость химических реакций. Зависимость скорости от природы реагирующих веществ, концентрации, температуры. Катализ и катализаторы. Обратимость химических реакций. Химическое равновесие и условия его смещения. Окислительно-восстановительные реакции. Важнейшие окислители и восстановители.

Растворы. Электролитическая диссоциация.

Растворы. Растворимость веществ. Зависимость растворимости веществ от их природы, от температуры, давления. Тепловой эффект при растворении. Концентрация растворов. Значение растворов в промышленности, сельском хозяйстве, быту. Способы выражения концентраций растворов. Электролитическая диссоциация. Степень диссоциации. Сильные и слабые электролиты. Реакции ионного обмена. Электролитическая диссоциация неорганических и органических кислот, щелочей и солей. Электролиз водных растворов и расплавов солей.

2. Раздел «Неорганическая химия».

Оксиды, кислоты, основания, соли. Классификация, номенклатура, способы получения и свойства. Понятие об амфотерности. Генетическая связь между основными классами неорганических соединений.

Водород.

Физические и химические свойства. Взаимодействие с кислородом, металлами, оксидами металлов и органическими соединениями.

Галогены.

Общая характеристика галогенов. Хлор. Физические, химические свойства. Реакции с неорганическими и органическими веществами. Получение хлора. Соединения хлора: хлороводород, хлориды, кислородсодержащие соединения.

Подгруппа кислорода.

Общая характеристика элементов главной подгруппы VI группы. Кислород. Химические, физические свойства. Получение кислорода. Аллотропия. Применение кислорода. Сера, ее физические и химические свойства. Соединения серы: сероводород, сульфиды, оксиды серы, получение и свойства. Серная кислота, ее свойства, химические основы производства. Соли серной кислоты. Вода. Физические, Химические свойства. Кристаллогидраты. Значение воды в промышленности, сельском хозяйстве, быту, природе. Охрана водоемов от загрязнения.

Подгруппа азота.

Общая характеристика элементов главной подгруппы V группы. Азот. Соединения азота. Физические и химические свойства. Соединения азота: аммиак, соли аммония, оксиды азота, азотная кислота, соли азотной кислоты, физические и химические свойства. Производство аммиака. Фосфор, его аллотропные формы, физические и химические свойства. Оксид фосфора (V), фосфорная кислота и ее соли.

Подгруппа углерода.

Общая характеристика элементов главной подгруппы IV группы. Физические и химические свойства. Углерод, его аллотропные формы. Соединения углерода: оксиды, угольная кислота и ее соли. Кремний. Физические и химические свойства. Химические свойства соединений кремния; нахождение в природе и использование в технике.

Металлы.

Положение в периодической системе. Особенности строения атомов металлов. Металлическая связь. Характерные физические и химические свойства. Коррозия металлов. Щелочные металлы. Общая характеристика на основе положения в периодической система Д.И. Менделеева. Соединения натрия, калия в природе, их применение.

Общая характеристика элементов главных подгрупп II и III групп периодической системы Д.И. Менделеева. Кальций, его химические свойства. Свойства соединений кальция и их нахождение в природе. Жесткость воды и способы ее устранения.

Алюминий. Характеристика гидроксида алюминия и его соединений. Амфотерность оксида и гидроксида алюминия. Железо. Характеристика железа, оксидов, гидроксидов, солей железа (II, III). Природные соединения железа.

3. Раздел «Органическая химия».

Строение органических соединений.

Основные положения теории химического строения А.М. Бутлерова. Зависимость свойств веществ от химического строения. Изомерия. Электронная природа химических связей в молекулах, органических соединений, способы разрыва связей, понятие о свободных радикалах.

Предельные углеводороды.

Гомологический ряд предельных углеводородов, их электронное и пространственное строение (sp3-гибридизация). Метан. Номенклатура, физические и химические свойства предельных углеводородов. Изомерия. Циклопарафины. Предельные углеводороды в природе.

Непредельные углеводороды.

Гомологический ряд этиленовых углеводородов. Двойная связь, σ - и π -связи, sp2-гибридизация. Физические свойства. Изомерия углеродного скелета и положения двойной связи. Номенклатура этиленовых углеводородов. Химические свойства. Получение углеводородов реакцией дегидрирования. Применение этиленовых углеводородов. Природный каучук, его строение и свойства.

Ацетилен. Тройная связь, sp-гибридизация. Гомологический ряд ацетилена. Номенклатура. Изомерия. Физические и химические свойства, применение ацетилена. Получение его карбидным способом из метана.

Ароматические углеводороды.

Бензол, его электронное строение, химические свойства. Промышленное получение и применение бензола. Гомологи бензола. Взаимосвязь ароматических углеводородов.

Спирты. Фенолы.

Спирты, их строение, химические свойства. Изомерия. Номенклатура спиртов. Химические свойства спиртов. Многоатомные спирты. Генетическая связь между углеводородами и спиртами.

Фенол, его строение. Физические и химические свойства фенола, сравнение со свойствами алифатических спиртов. Применение фенола.

Альдегиды.

Альдегиды, их строение, химические свойства. Номенклатура. Особенности карбонильной группы. Получение и применение муравьиного и уксусного альдегидов.

Карбоновые кислоты.

Гомологический ряд предельных одноосновных кислот, их строение. Карбоксильная группа, взаимное влияние карбоксильной группы и углеродного радикала. Номенклатура. Физические и химические свойства карбоновых кислот. Уксусная, пальмитиновая, стеариновая, олеиновая кислоты. Получение и применение карбоновых кислот.

Сложные эфиры. Жиры.

Сложные эфиры. Строение, получение реакцией этерификации. Химические свойства.

Жиры в природе, их строение и свойства. Синтетические моющие средства, их значение.

Углеводы.

Глюкоза, ее строение, химические свойства, роль в природе. Сахароза, ее гидролиз. Крахмал и целлюлоза, их строение, химические свойства, роль в природе. Применение целлюлозы и ее производных. Понятие об искусственных волокнах.

Амины. Аминокислоты.

Амины как органические основания. Строение аминов. Взаимодействие с водой и кислоты.

Анилин. Получение анилина из нитробензола. Практическое значение анилина.

Аминокислоты. Строение, химические особенности, изомерия аминокислот. у-аминокислоты, их значение в природе. Синтез пептидов, их строение. Понятие об азотсодержащих гетероциклических соединениях на примере пиридина и пиррола.

Белки. Нуклеиновые кислоты.

Строение, структура и свойства белков. Успехи в изучении и синтезе белков. Значение микробиологической промышленности. Нуклеиновые кислоты, строение нуклеотидов. Принцип комплементарности в построении двойной спирали ДНК. Роль нуклеиновых кислот в жизнедеятельности клетки.

Высокомолекулярные соединения.

Общие понятия химии высокомолекулярных соединений: мономер, полимер, структурное звено, степень полимеризации, средняя молекулярная масса. Полимеризация, поликонденсация. Линейная и разветвленная структура полимеров. Зависимость свойств полимеров от их строения.

Методология вступительных испытаний.

Вступительное испытание по Химии проводится в письменной форме теста с заполнением бланка ответов. Продолжительность вступительного испытания - 60 минут (1 час).

Работа включает в себя 20 местовых заданий, соответствующих содержанию тем программы. В каждом задании требуется выбрать только один правильный ответ из четырех предлагаемых. Правильный ответ на каждое задание оценивается в 5 баллов, (максимальная сумма баллов при решении всех заданий равна 100). Результаты прохождения вступительного испытания оцениваются по 100 - балльной шкале.

Критерии оценки знаний абитуриента:

- оценка «отлично» выставляется, если набрано от 80 до 100 баллов;
- оценка «хорошо» выставляется, если набрано от 60 до 79 баллов.
- оценка «удовлетворительно» выставляется, если набрано от 30 до 59 баллов;

- оценка «неудовлетворительно» выставляется, если набрано менее 30 баллов.

Абитуриент считается прошедшим вступительное испытание, если его оценка не ниже, чем «удовлетворительно».

Во время экзамена абитуриентам запрещается пользоваться мобильными телефонами и любым другим электронным оборудованием, а также учебниками и справочными материалами.

Для экономии времени можно пропустить задание, которое не удаётся выполнить сразу, и перейти к следующему. Если после выполнения всей работы останется время, то можно вернуться к пропущенным заданиям.

Список литературы

- 1. Габриелян О.С. Химия. 11 класс. Базовый уровень: учебник для общеобразовательных учреждений / О.С. Габриелян. 2-е изд., стереотип. М.: ДРОФА. 2007. 218 с.
- 2. Габриелян О.С., Остроумов И.Г., Сладков С.А. Химия: 8 класс. Учебник. М.: Издательство Просвещение, 2021. 176 с.
- 3. Габриелян О.С., Остроумов И.Г., Сладков С.А. Химия. 10 класс. Базовый уровень. Учебник. М.: АО «Издательство «Просвещение», 2021. 128 с.
- 4. Габриелян О. С., Остроумов И. Г., Сладков С. А., Дорофеева Н.М. Практикум по общей, неорганической и органической химии. М., Академия, 2009, 256 с.
- 5. Доронькин В.Н., Бережная А.Г., Сажнева Т.В., Февралева В.А., Химия. Большой справочник для подготовки к ЕГЭ: справочное издание. М.: Легион, 2022, 560 с.
- 6. Еремин В.В., Антипин Р.Л., Дроздов А.А., Карпова Е.В., Рыжова О.Н. Химия. Углубленный курс подготовки к ЕГЭ. – М.: Изд-во Эксмо, 2022. – 608 с.
- 7. Еремин В.В., Кузьменко Н.Е., Лунин В.В. и др. Химия. 11 класс. Учебник. Базовый уровень. 3-е изд., стереотип. М.: ДРОФА. 2012. 158 с.

- 8. Еремин В.В., Кузьменко Н.Е., Теренин В.И. и др. Химия. 10 класс. Учебник. Базовый уровень. М.: ДРОФА. 2021. 204 с.
- 9. Каверина А.А., Добротин Д.Ю., Медведев Ю.Н. Химия. Высший балл. Самостоятельная подготовка к ЕГЭ. М.: Изд-во Экзамен, 2017. 432 с.
- 10. Кузнецова Н.Е., Левкин А.Н., Шаталов М.А. Химия. 11 класс: базовый уровень: учебник для учащихся общеобразовательных учреждений / Н.Е. Кузнецова, А.Н. Левкин, М.А. Шаталов; под ред. Проф. Н.Е Кузнецовой. М.: ВЕНТАНА-ГРАФ, 2012. 208 с.
- 11. Кузнецова Н.Е., Титова И.М., Гара Н.Н. Химия. 9 класс. Учебник. М.: Издательство Просвещение/ВЕНТАНА-ГРАФ. 2021. 320 с.
- 12. Кузнецова Н.Е., Титова И.М., Гара Н.Н. Химия: 10 класс: базовый уровень: учебник для учащихся общеобразовательных учреждений. М.: ВЕНТАНА-ГРАФ, 2012. 288 с.
- 13. Кузьменко Н., Еремин В., Попков В. Химия. Для школьников старших классов и поступающих в вузы: Учебное пособие. М.: Изд-во МНУ; «Печатные традиции», 2008. 480 с.
- 14. Кузьменко Н.Е., Еремин В.В., Попков В.А. Начала химии. Современный курс для поступающих в вузы. Т. 1/ Н.Е. Кузьменко и др. 7-е изд., перераб. и доп. М.: Экзамен, 2002. 384 с.
- 15. Кузьменко Н.Е., Еремин В.В., Попков В.А. Начала химии. Для поступающих в вузы. М.: изд-во Лаборатория знаний, 2022. 704 с.
- 16. Левкин А.Н., Карцова А.А. Школьная химия: самое необходимое. СПб: Авалон, Азбука-классика, 2004, 288 с.
- 17. Начала химии [Электронный ресурс]: для поступающих в вузы / Н. Е. Кузьменко, В. В. Еремин, В. А. Попков. 16-е изд., доп. и перераб. (эл.). Электрон. текстовые дан. (1 файл pdf: 707 с.). М.: Изд-во Лаборатория знаний, 2016.
- 18. Рудзитис Г. Е., Фельдман Ф. Г. Химия. Неорганическая химия. Органическая химия. 9 класс.: учебник для общеобразовательных учреждений / Рудзитис Г. Е., Фельдман Ф. Г. 13-е изд. М.: Просвещение, 2009. 191 с.

- 19. Рудзитис Г.Е., Фельдман Ф.Г. Химия. 11 класс: учебник для учащихся общеобразовательных учреждений: базовый уровень / Г.Е. Рудзитис, Ф.Г. Фельдман. 14 изд. М.: Издательство "Просвещение", 2012. 159 с.
- 20. Сборник задач, упражнений и тестов по химии, 8-9 классы, к учебникам О.С. Габриеляна, И.Г. Остроумова, С.А. Сладкова «Химия: 8 класс», «Химия: 9 класс», М.: Издательство «Экзамен», 2021. 286 с.
- 21. Свердлова Н.Д., Карташов С.Н., Радугина О.Г. Химия. Справочник для старшеклассников и поступающих в вузы. М.: Изд-во АСТ-Пресс, 2019. 576 с.
- 22. Сдаем экзамен по химии. Теоретический курс и задачник для самостоятельного изучения химии / под ред. К.Н. Зеленина, В.П. Сергутиной, О.В. Солода. СПб: Элби, 2005, 384 с.

Примеры вступительных тестовых заданий.

(укажите номер правильного ответа)

1.	Определите,	атомы	какого	ИЗ	указ	анных	В	ряду	элеме	нта	E
основном	состоянии	имеет	одина	ков	ую	конфи	гур	ацию	вне	шнеі	ΓC
энергетич	еского уровня.	•									
1)	Cl;										
2)	Ca;										
3)	Mg;										
4)	S.										
2.	Из предложе	нного п	геречня	выб	ерит	е веще	ств	о, в с	трукт	урнь	IX
единицах	которого прис	утствую	т только	кое	вален	тные п	ОЛЯ	рные	связи.	,	
1)	NH_4NO_3 ;										
2)	CH ₃ OH;										
3)	H_2O_2 ;										
4)	C_6H_6 .										
3.	Из предложе	нного п	еречня в	выбе	рите	вещест	гво,	, котој	рое вс	гупас	ет
в реакцин	о поликонденс:	ации.									
1)	метиламин;										
2)	трипальмитат	глицери	іна;								
3)	глюкоза;										
4)	линолевая кис	слота.									
4. V	Із предложенн	ого пер	ечня вь	лбер	ите ј	реакци	ю,	котор	ая яв.	ляетс	eя
одноврем	енно экзотермі	ической	и реакці	ией с	соеди	нения:					
1)	NaOH + HCl -	→;									
2)	$Ca + H_2O \rightarrow;$										
3)	$N_2 + O_2 \rightarrow$;										

4) Fe + $Cl_2 \rightarrow$.

5.	Определите, атомы какого из указанных в ряду элементов в
основно	м состоянии содержит ровно один неспаренный электрон.
1)	Cl;
,	O;
	Si;
	Cr.
''	
6.	Из указанных в ряду химических элементов выберите элемент,
которы	і в Периодической системе химических элементов Д.И. Менделеева
находит	ся в малом периоде.
1)	Cr;
,	Fe;
	N;
4)	Cl.
ŕ	
	Из предложенного перечня выберите вещество, для которого
характе	рна высокая температура плавления, хорошая растворимость в воде
характе	
характе	рна высокая температура плавления, хорошая растворимость в воде
характе и налич	рна высокая температура плавления, хорошая растворимость в воде ие ковалентной полярной связи.
характе и налич	рна высокая температура плавления, хорошая растворимость в воде ие ковалентной полярной связи. $SiO_2;$
характе и налич 1) 2)	рна высокая температура плавления, хорошая растворимость в воде ие ковалентной полярной связи. SiO ₂ ; HCl;
характе и налич 1) 2) 3) 4)	рна высокая температура плавления, хорошая растворимость в воде ие ковалентной полярной связи. SiO ₂ ; HCl; Na ₂ SO ₄ ; KBr.
характе и налич 1) 2) 3) 4) 8.	рна высокая температура плавления, хорошая растворимость в воде ие ковалентной полярной связи. SiO ₂ ; HCl; Na ₂ SO ₄ ; KBr.
характе и налич 1) 2) 3) 4) 8.	рна высокая температура плавления, хорошая растворимость в воде ие ковалентной полярной связи. SiO ₂ ; HCl; Na ₂ SO ₄ ; KBr.
характе и налич 1) 2) 3) 4) 8.	рна высокая температура плавления, хорошая растворимость в воде ие ковалентной полярной связи. SiO ₂ ; HCl; Na ₂ SO ₄ ; KBr.
характе и налич 1) 2) 3) 4) 8. углерод	рна высокая температура плавления, хорошая растворимость в воде ие ковалентной полярной связи. SiO ₂ ; HCl; Na ₂ SO ₄ ; KBr. Из предложенного перечня выберите вещество, в котором все атомы а находятся в состоянии sp ² -гибридизации.
характе и налич 1) 2) 3) 4) 8. углерод 1)	рна высокая температура плавления, хорошая растворимость в воде ие ковалентной полярной связи. SiO ₂ ; HCl; Na ₂ SO ₄ ; KBr. Из предложенного перечня выберите вещество, в котором все атомы а находятся в состоянии sp ² -гибридизации. щавелевая кислота;
характе и налич 1) 2) 3) 4) 8. углерод 1) 2)	рна высокая температура плавления, хорошая растворимость в воде ие ковалентной полярной связи. SiO ₂ ; HCl; Na ₂ SO ₄ ; KBr. Из предложенного перечня выберите вещество, в котором все атомы а находятся в состоянии sp ² -гибридизации. щавелевая кислота; толуол;

	9. И	з предложенного перечня выберите продукт гидролиза метилового
эфир	а ами	ноуксусной кислоты в солянокислой среде.
	1)	CH ₃ Cl;
	2)	CH ₃ COONH ₄ ;
	3)	NH ₂ CH ₂ COOH;
	4)	CH ₃ OH.
	•)	
	10.	Из предложенного перечня выберите вещество, термическое
разл	ожени	не которого относится к окислительно-восстановительным
реак	циям	:
	1)	гидрокарбонат калия;
	2)	перманганат калия;
	3)	карбонат магния;
	4)	гидроксид алюминия.
	• • •	тидроконд шномини.
	11. C	Определите, в атомах какого из указанных в ряду элементов общее
числ	о р-эл	ектронов не превышает общее число s-электронов.
	1)	C;
	2)	F;
	3)	Sn;
	4)	Ge.
	1)	
	12. V	Із предложенного перечня выберите вещество, которое не вступает
в реа	кцию	этерификации.
	1)	целлюлоза;
	2)	фенилаланин;
	3)	глюкоза;
	4)	метиламин.

13. Выберите металл, который при комнатной температуре реагирует с
водой со значительной скоростью:
1) A a.
1) Ag;
2) Cu;
3) Li;
4) Al.
14. Из числа указанных в ряду элементов выберите элемент, высшая
степень окисления которого численно не совпадает с номером группы.
1) C;
2) F;
3) Sn;
4) Ge.
15. Из предложенного перечня выберите вещество немолекулярного
строения, в котором присутствует одинаковый тип химической связи.
1) белый фосфор;
2) пероксид водорода;
3) кремнезем;
4) кремний.
16. Из предложенного перечня выберите элемент, атомы которого
образуют с водородом более длинную ковалентную связь по сравнению с
остальными.
1) O;
2) F;
3) I;
4) Br.
17. Из предложенного перечня веществ выберите вещество, в
молекулах которого содержится система сопряженных связей.

1) пентадиен-1,4;
2) ацетилен;
3) циклопентан;
4) толуол.
18. Из числа указанных в ряду элементов выберите элемент, который
проявляет степень окисления, равную +2, и не проявляет степень окисления,
равную +4.
1) Se;
2) Zn;
3) K;
4) S.
19. Из предложенного перечня выберите вещество, которое не
взаимодействуют с раствором гидроксида натрия.
1) дипептид цистеина;
2) хлорид этиламмония;
3) анилин;
4) аланин.
20. Из предложенного перечня веществ выберите вещество, которое
вступает с бромоводородом в реакцию замещения.
1) цинк;
2) гидроксид натрия;
3) нитрат серебра;
4) перманганат калия.
Автор программы:
Доронина Ольга Дмитриевна, заведующий кафедрой ОТПБиЭ, к.х.н., д.б.н. Уне

Одобрена на заседании кафедры охраны труда, промышленной безопасности и экологии ОУП ВО «АТиСО» (Протокол от «20» марта 2023 г. № 7).